SEMISTABILITY AT ∞ , ∞ -ENDED GROUPS AND GROUP COHOMOLOGY

MICHAEL L. MIHALIK

ABSTRACT. A finitely presented group G, is semistable at ∞ if for some (equivalently any) finite complex X, with $\pi_1(X) = G$, any two proper maps $r,s \colon [0,\infty) \to \tilde{X}$ (\equiv the universal cover of X) that determine the same end of \tilde{X} are properly homotopic in \tilde{X} .

If G is semistable at ∞ , then $H^2(G; \mathbb{Z}G)$ is free abelian. 0- and 2-ended groups are all semistable at ∞ .

THEOREM. If $G = A *_C B$ where C is finite and A and B are finitely presented, semistable at ∞ groups, then G is semistable at ∞ .

THEOREM. If $\alpha\colon C\to D$ is an isomorphism between finite subgroups of the finitely presented semistable at ∞ group H, then the resulting HNN extension is semistable at ∞ .

Combining these results with the accessibility theorem of M. Dunwoody gives

THEOREM. If all finitely presented 1-ended groups are semistable at ∞ , then all finitely presented groups are semistable at ∞ .

1. Introduction. If K is a locally finite connected CW complex, then proper maps $r, s \colon [0, \infty) \to K$ converge to the same end of K if for any compact set $C \subset K$ there exists an integer N(C) > 0 such that $r([N, \infty))$ and $s([N, \infty))$ lie in the same component of K - C. If E(K) is the set of all proper maps $[0, \infty) \to K$, then $\mathcal{E}(K)$, the set of ends of K, is E modulo the equivalence relation: $r \sim s$ if r and s converge to the same end of K. The number of ends of K is the cardinality of \mathcal{E} .

Let G be a finitely presented group, and X a finite complex with $\pi_1(X) = G$. Each of the following definitions is independent of the finite complex X, so long as $\pi_1(X) = G$. The number of ends of G is the number of ends of G, the universal cover of G. The number of ends of G is the number of ends of G, the universal cover of G. G is semistable at G if for any two proper maps G, so G, that converge to the same end of G, G and G are properly homotopic. A finitely presented group G has G, G, and G ends G ends G for any two proper maps G, so G finitely presented group G has G, G, and G ends G for any two proper maps G, so G finitely presented group G has G, G, and G ends G for any two proper maps G, so G finitely presented group G has G, and G ends G for any two proper maps G. The semistability at G for G ended groups has been set aside until now. M. Dunwoody's accessibility theorem G provides an algebraic result which we combine with our geometric results to obtain

THEOREM. If all finitely presented 1-ended groups are semistable at ∞ , then all finitely presented groups are semistable at ∞ .

THEOREM. If all finitely presented 1-ended groups K have free abelian $H^2(K; ZK)$, then all finitely presented groups G have free abelian $H^2(G; ZG)$.

Received by the editors March 2, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 57M10; Secondary 20J05.

In $[\mathbf{G}\mathbf{M}]$ we showed that if G is semistable at ∞ , then $H^2(G; ZG)$ is free abelian. It is unknown if all finitely presented groups are semistable at ∞ , or if all finitely presented groups G are such that $H^2(G; ZG)$ is free abelian. In $[\mathbf{S}]$, J. Stallings showed that a finitely presented group G has more than one end if and only if G is an amalgamated free product $A*_C B$ and C is finite of index ≥ 2 in both A and B, or G is an HNN extension, $\langle A,t\colon t^{-1}C_1t=C_2\rangle$, where the C_i are isomorphic finite subgroups of A. If $G=A*_C B$ where C is finite, or $G=\langle A,t\colon t^{-1}C_1t=C_2\rangle$, where the C_i are finite, we say G factors over a finite group. Call A and B the factors of G when $G=A*_C B$ and A the factor of G when $G=\langle A,t\colon t^{-1}C_1t=C_2\rangle$. Assume G has more than one end. By Stallings' theorem, G factors over a finite group. If a factor of G has more than one end, then it too factors over a finite group. The group G is called accessible if the process of successively decomposing factors with more than one end terminates after a fintie number of steps. In $[\mathbf{D}]$, Dunwoody proves that all finitely presented groups are accessible.

- **2. Preliminaries.** Let $G = A *_C B$ be an amalgamated free product. In [S], Stallings discusses the pregroup structure of G. In particular we find the following definition: $g_1g_2\cdots g_n$ is a reduced word in G if
 - (i) Each g_i is an element of A C or B C, and
 - (ii) $g_i \in A C$ if and only if $g_{i+1} \in B C$ for any $i \in \{1, 2, ..., n-1\}$.
 - By Theorem 32.A.4.5 and Example 3.A.5.3 of [S] we have

PROPOSITION 1. Every element of G-C is represented by a reduced word in G. If $u_1u_2\cdots u_k$ and $v_1v_2\cdots v_m$ are reduced words in G representing the same element of G, then k=m and for each $i,\ v_i^{-1}\cdots v_1^{-1}u_1\cdots u_i$ is an element of C. \square

Proposition 1 provides much of the geometry in what is to come.

If $\langle g_1,\ldots,g_n\colon r_1,\ldots,r_m\rangle$ is a presentation for the group G, let X be the standard finite 2-complex obtained from this presentation. Each edge of \tilde{X} , the universal cover of X, corresponds to one of the letters g_1^\pm,\ldots,g_n^\pm . A proper map $r\colon [0,\infty)\to \tilde{X}$ is called an edge path $to\infty$ at * if r(0)=* and r restricted to [n,n+1], for each $n\in\{0,1,\ldots\}$, is an edge of \tilde{X} . r can be represented as (a_1,a_2,\ldots) at *, where each $a_i\in\{g_1^\pm,\ldots,g_n^{\pm 1}\}$. Note that the initial point * of r must be specified to distinguish r from its translates under covering transformations of \tilde{X} . To see that G is semistable at ∞ , it suffices to show: Any two edge paths to ∞ in \tilde{X} that converge to the same end are properly homotopic.

3. The main theorems.

THEOREM 1. If $G = A *_C B$, where C is finite, and A and B are finitely presented, semistable at ∞ groups, then G is semistable at ∞ .

PROOF. The following excessive presentation is a geometric convenience. Let $P_1 = \langle a_1, \ldots, a_n, b_1, \ldots, b_m, c_1, \ldots, c_k \colon r_1, \ldots, r_l, t_1, \ldots, t_q, s_1, \ldots, s_p \rangle$ be a presentation for G where c_1, \ldots, c_k generates $C, P_2 = \langle a_1, \ldots, a_n, c_1, \ldots, c_k \colon r_1, \ldots, r_l \rangle$ is a presentation for A, and $P_3 = \langle b_1, \ldots, b_m, c_1, \ldots, c_k \colon t_1, \ldots, t_q \rangle$ is a presentation for B. Furthermore, assume no a_i or b_j is in C. Let X be the standard finite 2-complex obtained from P_1 such that $\pi_1(X) = P_1$. Let \tilde{X} be the universal cover of X. Let Y and Z be the finite complexes obtained from P_2 and P_3 respectively. \tilde{X}

contains a disjoint collection of copies of \tilde{Y} (respectively \tilde{Z}), one for each element of G/A (respectively G/B).

LEMMA 1. Assume $u=(u_1,\ldots,u_f)$ is an edge path in \tilde{X} . Let x and y be the initial and end point of u respectively. If Λ is a copy of \tilde{Y} (or \tilde{Z}) in \tilde{X} , and u intersected with Λ is $\{x,y\}$, then there is an edge path d in the letters $c_1^{\pm 1},\ldots,c_k^{\pm 1}$ from x to y.

PROOF. Since Λ is a copy of Y, and $u \cap \Lambda = \{x,y\}$, we must have u_1 and u_f in $\{b_1^{\pm 1}, \ldots, b_m^{\pm 1}\}$. Let β_1 be the maximal subpath of u, with initial edge u_1 , and each subsequent edge in $\{b_1^{\pm 1}, \ldots, b_m^{\pm 1}, c_1^{\pm 1}, \ldots, c_k^{\pm 1}\}$. If u does not equal β_1 , then the edge of u following the last edge of β_1 (call it e) must be in $\{a_1^{\pm 1}, \ldots, a_n^{\pm 1}\}$. Let α_1 be the maximal subpath of u, with initial edge e, such that each edge of α_1 is in $\{a_1^{\pm 1}, \ldots, a_n^{\pm}, c_1^{\pm 1}, \ldots, c_k^{\pm 1}\}$. Continuing, we have rewritten u as $(\beta_1, \alpha_1, \ldots, \beta_{t-1}, \alpha_{t-1}, \beta_t)$. (Since the last edge of u is in $\{b_1^{\pm}, \ldots, b_m^{\pm}\}$, we must end with a β .) If v is an initial or end point of α_i for any $i \in \{1, \ldots, t-1\}$, call v a piercing point of u. Since v and v are in v, there is an edge path from v to v in the letters $\{a_1^{\pm}, \ldots, a_n^{\pm}, c_1^{\pm}, \ldots, c_k^{\pm}\}$. If v is not reduced. Hence some v is v in the letters v in the l

Note that $\tau \cap \Lambda$ is the empty set. u' can be written in terms of maximal subpaths, using two fewer subpaths than the number needed for u. The piercing points of u' are a subset of the piercing points of u. (This is used in Remark 1, below). Continuing, we will have an edge path from x to y in the letters $\{b_1^{\pm 1}, \ldots, b_m^{\pm 1}, c_1^{\pm 1}, \ldots, c_k^{\pm 1}\}$. But x and y are in Λ , a copy of \tilde{Y} . Hence there is an edge path from x to y in the letters $\{c_1, \ldots, c_k\}$. \square

REMARK 1. The above process of replacing a subpath of first u, then u', etc. by edge paths in the letters $\{c_1^{\pm 1}, \ldots, c_k^{\pm 1}\}$ is always done so that the replacement edge paths connect two piercing points of u. If the order of the group C is α , our subpath replacement process can be interpreted homologically for loops in \tilde{X} as follows: if u is a loop in \tilde{X} then u is homologous, in the α -fold star of the image of u, to $d_1 + d_2 + \cdots + d_z$ where each d_i is a loop entirely in the edges $\{a_1^{\pm 1}, \ldots, a_n^{\pm 1}, c_1^{\pm 1}, \ldots, c_k^{\pm 1}\}$.

LEMMA 2. Assume u, d, x, y and Λ are as in Lemma 1. If $\Lambda, \Lambda_1, \ldots, \Lambda_p$ are the copies of \tilde{Y} and \tilde{Z} in \tilde{X} that meet u, then u is homotopic to d rel. $\{0,1\}$ by a homotopy H, with image in $\bigcup_{i=1}^p \Lambda_i$. (Note that we do not include Λ in this union!)

PROOF. Again assume Λ is a copy of \tilde{Y} . Recall, u was written as $(\beta_1, \alpha_1, \ldots, \beta_{t-1}, a_{t-1}, \beta_t)$. One of the paths δ of $\{\alpha_1, \ldots, \alpha_{t-1}\} \cup \{\beta_2, \ldots, \beta_{t-1}\}$, when considered as an element of G, fell in G. Hence we have an edge path, τ , in the letters $\{c_1^{\pm 1}, \ldots, c_k^{\pm 1}\}$ with the same initial point and end point as δ .

Each of $\alpha_1, \ldots, \alpha_{t-1}, \beta_2, \ldots, \beta_{t-1}$ fall in some Λ_i , $i \in \{1, \ldots, p\}$. Hence δ is in some Λ_i , and the loop $\delta \tau^{-1}$ must be in this Λ_i . Thus δ is homotopic rel. $\{0,1\}$ to τ in this Λ_i . Continuing, we have u is homotopic rel. $\{0,1\}$ to β , an edge path in the letters $\{b_1^{\pm 1}, \ldots, b_m^{\pm 1}, c_1^{\pm}, \ldots, c_k^{\pm 1}\}$, where the initial and terminal edges of β are u: and u_f respectively. (Recall $u = (u_1, \ldots, u_f)$, and u_1 and u_f are in $\{b_1^{\pm}, \ldots, b_m^{\pm 1}\}$.)

Hence β is homotopic rel. $\{0,1\}$ to d in the copy of \tilde{Z} containing u_1 and u_f . This copy of \tilde{Z} is one of the Λ_i , $i \in \{1, \ldots, p\}$. \square

Assume $u, d, x, y, \Lambda, \Lambda_1, \ldots, \Lambda_p$, and H are as in Lemma 2. Assume u' is an edge path in \tilde{X} with initial point x' and end point y'. Assume $u' \cap \Lambda = \{x', y'\}$, and that $\Lambda, \Lambda'_1, \ldots, \Lambda'_q$ are the copies of \tilde{Y} and \tilde{Z} that meet u'. By Lemma 2, u' is homotopic rel. $\{0,1\}$ to d', an edge path from x' to y' in the letters $c_1^{\pm 1}, \ldots, c_k^{\pm 1}$, by a homotopy H', with the image in $\bigcup_{i=1}^q \Lambda'_i$.

LEMMA 3. If there is no edge path from x to x' in the letters $c_1^{\pm 1}, \ldots, c_k^{\pm 1}$, then no Λ_i meets any Λ'_j . In particular, there are finite complexes F and F' containing the images of H and H' respectively, such that $F \cap F'$ is the empty set.

PROOF. If $\Lambda_i \cap \Lambda'_j$ is nonempty, choose a vertex v in $\Lambda_i \cap \Lambda'_j$. Let w (respectively w') be a subpath of u (u') from x (x') to a vertex of Λ_i (Λ'_j). Let e (e') be an edge path in Λ_i (Λ'_j) from the end point of w (w') to v. Then $w'e'e^{-1}w^{-1}$ is an edge path from x' to x whose intersection with Λ is $\{x', x\}$. Lemma 1 now contradicts our hypothesis on x and x'. \square

LEMMA 4. If r is an edge path to ∞ in \tilde{X} , Λ is a copy of \tilde{Y} or \tilde{Z} in \tilde{X} , and r meets Λ in an infinite set of vertices V, then r is properly homotopic to an edge path to ∞ with image in Λ , which also passes through each vertex in V.

PROOF. Represent r as $(\beta, \alpha_1, u_1, \alpha_2, u_2, \dots)$ at *, where α_i is either a trivial path or a maximal subpath of r contained in Λ and u_i is a subpath of r such that $u_i \cap \Lambda = \{x_i, y_i\}$, where x_i is the initial point of u_i and y_i is the end point of u_i . Let H_i be the homotopy rel. $\{0,1\}$ of u_i to d_i described in Lemma 2, where d_i is an edge path in the letters $c_1^{\pm 1}, \dots, c_k^{\pm 1}$. Let α be the order of C. By Lemma 3, if $x_i \notin St^{\alpha}(x_j)$, then the image of H_i misses the image of H_j . Hence by combining the H_i we have a proper homotopy of r to $(\beta, \alpha_1, d_1, \alpha_2, d_2, \dots)$, and $(\beta, \alpha_1, d_1, \alpha_2, d_2, \dots)$ is properly homotopic to $(\alpha_1, d_1, \alpha_2, d_2, \dots)$. \square

To finish Theorem 1 we show

LEMMA 5. If r and s are edge paths to ∞ in X which converge to the same end of X, then r and s are properly homotopic.

PROOF. We consider two cases.

Case 1. Assume r meets Λ , a copy of \tilde{Y} or \tilde{Z} , in the infinite set of vertices $\{v_1, v_2, \dots\}$. By Lemma 4, r is properly homotopic to t, an edge path to ∞ with image in Λ such that t passes through each v_i . Since r and s converge to the same end, s is properly homotopic to an edge path to ∞ of the form $(\delta_1, \alpha_1, \alpha_1^{-1}, \delta_2, \alpha_2, \alpha_2^{-1}, \dots)$ where each δ_i and α_i is an edge path of \tilde{X} , $s = (\delta_1, \delta_2, \dots)$, and the union of the end ponts of all α_i contains an an infinite subset W, of $\{v_1, v_2, \dots\}$. By Lemma 4, s is properly homotopic to s, an edge path to s in s that passes through each vertex of s. Now s and s are properly homotopic in s. Hence s and s are properly homotopic in s.

Cases 2. Assume neither r nor s is properly homotopic to an edge path to ∞ that meets a copy of \tilde{Y} or \tilde{Z} in an infinite number of vertices. Since r and s converge to the same end in \tilde{X} we may assume that $r = (\alpha_1, \alpha_2, \ldots)$ and $s = (\beta_1, \beta_2, \ldots)$,

where the initial point of α_i equals the initial point of β_i , for all I. The edge loop $\alpha_i\beta_i^{-1}$ is homotopically trivial by a homotopy H_i , whose image F_i lies in the union of all copies of \tilde{Y} and \tilde{Z} that meet the loop $\alpha_i\beta_i^{-1}$. Since neither r nor s meets a copy of \tilde{Y} or \tilde{Z} in an infinite number of vertices, a given compact set can meet only finitely many F_i . Thus by patching together the homotopies H_i we have a proper homotopy of r to s. \square

Theorem 2 is the analogue of Theorem 1, with amalgamated free product replaced by HNN extension. The proof of Theorem 2 is in direct analogy with that of Theorem 1. We provide a proof of Lemma 6, which is our analogue for Lemma 1. The remaining details can be filled paralleling Lemmas 2–5.

THEOREM 2. If C_1 and C_2 are finite subgroups of the finitely presented group $A, m: C_1 \to C_2$ is an isomorphism, and A is semistable at ∞ , then the HNN extension G of A with respect to m is semistable at ∞ .

PROOF. Let $\langle a_1,\ldots,a_n,d_1,\ldots,d_p,e_1,\ldots,e_p,t\colon r_1,\ldots,r_l,t^{-1}d_it=e_i\rangle$ be a presentation for G, where $\langle a_1,\ldots,a_n,d_1,\ldots,d_p,e_1,\ldots,e_p\colon r_1,\ldots,r_l\rangle$ is a presentation for $A,\ d_1,\ldots,d_p$ and e_i,\ldots,e_p are generators for C_1 and C_2 respectively, $a_i\in A-(C_1\cup C_2)$ and $m(d_i)=e_i$. Let X be the standard 2-complex obtained from the above presentation of G, and Y the standard 2-complex obtained from the above presentation of A.

LEMMA 6. Assume $u=(u_1,\ldots,u_k)$ is an edge path in \tilde{X} with initial point x and end point y. If Λ is a copy of \tilde{Y} in \tilde{X} and $u\cap \Lambda=\{x,y\}$, then there is an edge path from x to y in the letters $d_1^{\pm 1},\ldots,d_p^{\pm 1}$ or $e_1^{\pm 1},\ldots,e_p^{\pm 1}$.

PROOF. u_1 and u_k are in the set $\{t,t^{-1}\}$. Rewrite u as $(\beta_1,\alpha_1,\ldots,\beta_{q-1},\alpha_{q-1},\beta_q)$ where $\beta_i=t^{k(i)}$ and α_i is an edge path in the letters $\{a_1^{\pm 1},\ldots,a_n^{\pm 1},d_1^{\pm 1},\ldots,d_p^{\pm 1},e_1^{\pm 1},\ldots,e_p^{\pm 1}\}$. Call z a piercing point of u if z is not in $\{x,y\}$ and z is a vertex of an edge of u which is labeled $t^{\pm 1}$. There is an edge path from x to y in the letters $\{a_1^{\pm 1},\ldots,a_n^{\pm 1},d_1^{\pm 1},\ldots,d_p^{\pm 1},e_1^{\pm 1},\ldots,e_p^{\pm 1}\}$. By the pregroup structure of an HNN extension (see [S]), one of the α_i represents an element of C_1 or C_2 , and if $\alpha_i \in C_1$, then it is preceded and followed by t^{-1} and t respectively; if $\alpha_i \in C_2$, then it is preceded and followed by t and t^{-1} respectively. If $\alpha_i \in C_1$, replace $t^{-1}\alpha_i t$ by a word in the letters $\{e_1^{\pm 1},\ldots,e_p^{\pm 1}\}$. If $\alpha_i \in C_2$, then replace $t\alpha_i t^{-1}$ by a word in the letters $\{d_1^{\pm 1},\ldots,d_p^{\pm 1}\}$. Call the resulting edge path u^1 . The piercing points of u^1 are a subset of the piercing points of u. Hence (unless $u=t\alpha_1 t^{-1}$ or $u=t^{-1}\alpha_1 t$), we have $u^1 \cap \Lambda = \{x,y\}$. The edge path u^1 contains two fewer copies of $t^{\pm 1}$ than u. Define u^i inductively. By induction on the number of times $t^{\pm 1}$ appears in u^i , we have, for some i, $u^i=tvt^{-1}$ where $v\in C_2$ or $u^i=t^{-1}vt$ where $v\in C_1$. Hence there is an edge path from x to y in the letters $\{d_1^{\pm 1},\ldots,d_p^{\pm 1}\}$ or $\{e_1^{\pm 1},\ldots,e_p^{\pm 1}\}$. \square

REMARK 2. Let δ be the order of the group C_1 . In Lemma 6, α_i being in C_1 means there is an edge path τ_i , in the letters $\{d_1^{\pm 1}, \ldots, d_p^{\pm 1}\}$ such that $\alpha_i \tau_i^{-1}$ is a loop. Furthermore $t^{-1}\alpha_i t = t^{-1}\tau_i t \in C_2$. Hence there is an edge path γ_i in the letters $\{e_1^{\pm 1}, \ldots, e_p^{\pm 1}\}$ such that $t^{-1}\tau_i t \gamma_i^{-1}$ is a loop. Both τ_i and γ_i connect piercing points of u. Using 2-cells of \tilde{X} corresponding to the relations $t^{-1}d_i t = e_i$ of G, we see the loop $t^{-1}\tau_i t \gamma_i^{-1}$ is homotopically trivial in the δ -fold star of a piercing point of u. This, along with the subpath replacement process of Lemma 6, can be

interpreted homologically for loops in \tilde{X} as follows: If u is a loop in \tilde{X} , then u is homologous, in the δ -fold star of the image of u, to $d_1 + d_2 + \cdots + d_z$, where each d_i is a loop in the edges $\{a_1^{\pm 1}, \ldots, a_n^{\pm 1}, d_1^{\pm 1}, \ldots, d_1^{\pm 1}, \ldots, d_1^{\pm 1}, e_1^{\pm 1}, \ldots, e_p^{\pm 1}\}$.

THEOREM 3. If all finitely presented 1-ended groups are semistable at ∞ , then all finitely presented groups are semistable at ∞ .

PROOF. Apply induction to Dunwoody's Theorem along with Theorems 1 and 2, and the fact that all finite groups and all 2-ended groups are semistable at ∞ . \square

4. The cohomology of ∞ -ended groups. An inverse sequence $\{G_i, h_i\}$ of groups and homomorphisms is *semistable* (sometimes called Mittag-Leffler) if for each integer n > 0, there is an integer M(n) such that the images of all groups G_k , k > M(n), in G_n are equal. Let G be a finitely presented group, and X be a finite CW complex with $\pi_1(X) = G$. Let $\{C_i\}$ be an exhausting sequence of compact sets in \tilde{X} , the universal cover of X. In [GM] we showed

PROPOSITION A. $H^2(G; ZG)$ is free abelian if and only if the inverse sequence of groups $\{H_1(\tilde{X} - C_i)\}$ is semistable.

In $[\mathbf{M}_1, \text{ Theorem 2.1}]$ we showed

PROPOSITION B. G is semistable at ∞ if and only if for each end $[r] \in \mathcal{E}(\tilde{X})$ (see §1), the inverse sequence of groups $\{\pi_1(\tilde{X}-c_i),r\}$ is semistable.

 $\{H_1(\tilde{X}-C_i)\}\$ semistable means that for each compact set $C\subset \tilde{X}$ there is a compact set $D(C)\subset \tilde{X}$ such that for any third compact set E and loop α in $\tilde{X}-D$, α is homologous in $\tilde{X}-C$ to a sum of loops, each with image in $\tilde{X}-E$.

THEOREM 4. If $G = A *_C B$, where C is finite, and A and B are finitely presented with $H^2(A; \mathbb{Z}A)$ and $H^2(B; \mathbb{Z}B)$ free abelian, then $H^2(G; \mathbb{Z}G)$ is free abelian.

PROOF. Let P_1 be the presentation for G described in Theorem 1. Also, let X, Y, and Z be as in Theorem 1. Let F be compact in \tilde{X} . Let $\Lambda_1, \Lambda_2, \ldots, \Lambda_l$ be the copies of \tilde{Y} and \tilde{Z} in \tilde{X} that intersect F.

Since $H^2(A, ZA)$ and $H^2(B; ZB)$ are free abelian, for each $i \in \{1, \ldots, l\}$ there is a compact set $D_i \subset \Lambda_i$ such that if E is compact in \tilde{X} and α_i is a loop in $\Lambda_i - D_i$ then α_i is homologous in $\Lambda_i - F$ to a sum of loops in $\Lambda_i - E$. If α is the order of the group C, we show D(F) is the α -fold star of the union of the sets D_1, \ldots, D_l . Let E be compact in \tilde{X} and β a loop in $\tilde{X} - D$. By Remark 1, β is homologous in $\tilde{X} - \bigcup_{i=1}^l D_i$ to a sum of loops $d_1 + \cdots + d_z$, where each d_i is in a copy of \tilde{Y} or \tilde{Z} . If d_i lies in $\Lambda_j - D_j$ then d_i is homologous in $\Lambda_j - F$ to a sum of loops in $\Lambda_j - E$. If d_i lies in a copy Λ of \tilde{Y} or \tilde{Z} not in the set $\{\Lambda_1, \ldots, \Lambda_l\}$, then Λ misses F and d_i is homotopically trivial in Λ . Thus β is homologous in $\tilde{X} - F$ to a sum of loops each with image in $\tilde{X} - E$. \square

Similarly, Theorem 5 below follows from Remark 2.

THEOREM 5. If C_1 and C_2 are finite subgroups of the finitely presented group $A, m: C_1 \to C_2$ is an isomorphism, and $H^2(A, ZA)$ is free abelian, then the HNN extension G of A with respect to m is such that $H^2(G; ZG)$ is free abelian. \square

THEOREM 6. If all 1-ended finitely presented groups K have free abelian $H^2(K; ZK)$, then all finitely presented groups G have free abelian $H^2(G; ZG)$.

PROOF. Apply induction to Dunwoody's Theorem, along with Theorems 4 and 5, and the fact that all finite groups and all 2-ended groups K have free abelian $H^2(K; \mathcal{Z}K)$. \square

REFERENCES

- [D] M. Dunwoody, The accessibility of finitely presented groups, Invent. Math. 81 (1985), 449-457.
- H. Freudenthal, Über die Enden topologischer Raume und Gruppen, Math. Z. 33 (1931), 692-713.
- [GM] R. Geoghegan and M. Mihalik, Free abelian cohomology of groups and ends of universal covers, J. Pure Appl. Algebra **36** (1985), 123–137.
- [GH] M. Greenberg and J. Harper, Algebraic topology, Math. Lecture Note Series, Benjamin/Cummings, London, 1981.
- [M₁] M. Mihalik, Semistability at the end of a group extension, Trans. Amer. Math. Soc. 277 (1983),
- [M₂] _____, Ends of groups with the integers as quotient, J. Pure Appl. Algebra 35 (1985), 305-320.
- [M₃] ____, Ends of double extension groups, Topology 25 (1986), 45-53. [M₄] ____, Semistability of finitely generated groups and solvable groups, Topology Appl. 24 (1986), 259-269.
- $[\mathbf{M}_5]$ _____, Solvable groups that are simply connected at ∞ , Math. Z. (to appear).
- J. Stallings, Group theory and three dimensional manifolds, Yale Math. Monographs, No. 4, Yale Univ. Press, New Haven, Conn., 1971.

DEPARTMENT OF MATHEMATICS, VANDERBILT UNIVERSITY, NASHVILLE, TENNESSEE 37235